MT based on Probabilistic Synchronous Dependency Insertion Grammar (PSDIG)

نویسندگان

  • Yuan Ding
  • Martha Palmer
  • Aravind Joshi
چکیده

This proposal is an extension to the project “Generation in the Context of Machine Translation”, which is one of the projects done in the Johns Hopkins University Center for Speech and Language Processing 2002 summer workshop (WS02GMT). We first address some issues observed in WS02GMT which possibly leads to detrimental effects in machine translation performance. And hence we propose a new approach to construct the syntax based machine translation pipeline. Our proposal consists of two parts: first, doing machine translation based on shallow syntax level (roughly AR) instead deep syntax level (TR); and second, constructing a Probabilistic Synchronous Dependency Insertion Grammar (PSDIG) before constructing the machine translation model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Better Learning and Decoding for Syntax Based SMT Using PSDIG

As an approach to syntax based statistical machine translation (SMT), Probabilistic Synchronous Dependency Insertion Grammars (PSDIG), introduced in (Ding and Palmer, 2005), are a version of synchronous grammars defined on dependency trees. In this paper we discuss better learning and decoding algorithms for a PSDIG MT system. We introduce two new grammar learners: (1) an exhaustive learner com...

متن کامل

Machine Translation Using Probabilistic Synchronous Dependency Insertion Grammars

Syntax-based statistical machine translation (MT) aims at applying statistical models to structured data. In this paper, we present a syntax-based statistical machine translation system based on a probabilistic synchronous dependency insertion grammar. Synchronous dependency insertion grammars are a version of synchronous grammars defined on dependency trees. We first introduce our approach to ...

متن کامل

Synchronous Dependency Insertion Grammars: A Grammar Formalism For Syntax Based Statistical MT

This paper introduces a grammar formalism specifically designed for syntax-based statistical machine translation. The synchronous grammar formalism we propose in this paper takes into consideration the pervasive structure divergence between languages, which many other synchronous grammars are unable to model. A Dependency Insertion Grammars (DIG) is a generative grammar formalism that captures ...

متن کامل

Toward Synchronous Extensible Dependency Grammar

Extensible Dependency Grammar (XDG; Debusmann, 2007) is a flexible, modular dependency grammar framework in which sentence analyses consist of multigraphs and processing takes the form of constraint satisfaction. This paper shows how XDG lends itself to grammar-driven machine translation and introduces the machinery necessary for synchronous XDG. Since the approach relies on a shared semantics,...

متن کامل

Quasi-Synchronous Phrase Dependency Grammars for Machine Translation

We present a quasi-synchronous dependency grammar (Smith and Eisner, 2006) for machine translation in which the leaves of the tree are phrases rather than words as in previous work (Gimpel and Smith, 2009). This formulation allows us to combine structural components of phrase-based and syntax-based MT in a single model. We describe a method of extracting phrase dependencies from parallel text u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002